
152

INTRODUCTION

Natural flows are considered as one of the 
main sources of fresh water for diverse purposes 
(including drinking, agriculture, and industry). 
Therefore, rivers are one of the basic foundations 
of sustainable and environmentally friendly de-
velopment in human societies, while industrial 
and welfare developments have led to increasing 
stresses on river water quality, so that these vi-
tal and valuable resources are exposed to danger. 
Hence, given the major impact of human activi-
ties on the changes in river water quality, evalu-
ating river flows with a qualitative modeling ap-
proach is of a great importance in studying water 
resources [Abazi et al., 2022; Lusiana et al., 2022; 

Rahutami et al., 2022]. In the present investiga-
tion, despite diverse qualitative variables (which 
are included in the model), the qualitative study 
of river water was taken into account. At the same 
time, the amount of dissolved oxygen acts as the 
output of the model. Emphasis on the variable of 
dissolved oxygen and its acceptance in the role 
of the target parameter in modeling cover the set 
of reactions involved in the amount of oxygen. 
To put it another way, various factors affect the 
alterations in the concentration of dissolved oxy-
gen in the river, in such a way that we can refer 
to its increase through direct absorption from the 
atmosphere and photosynthesis of algae (algae 
photosynthesis) and its decrease due to consump-
tion in chemical and biological reactions during 
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ABSTRACT
Scrutinizing the changes in the quality of river water is one of the main factors of monitoring the quality of natural 
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marginal-scatter and subject profile diagrams were discussed. Moreover, the efficiency of the models in estimat-
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the processes of decay of pollution load in the 
river, oxidation of sediments and algae respira-
tion [Benedini and Tsakiris, 2013]. Hence, the 
concentration of dissolved oxygen as a quality 
item is a good indicator of the condition of the 
water body of the river, demonstrating the resul-
tant effect of physical, chemical and biological 
properties. All of the aforementioned items led 
to predicting the amount of dissolved oxygen 
in a natural flow in this study. Besides, physical 
variables such as water temperature and chemi-
cal variables such as phosphorus concentration 
were used in modeling. It is interesting to note 
that physical, chemical and biological classifica-
tions for qualitative variables are not an easy task 
at all since a number of qualitative parameters are 
the result of a set of physico-chemical-biological 
reactions and we can put them into various groups 
at the same time. This problem is designed while 
considering such an approach, so as to be in line 
with the comprehensiveness required in water re-
sources management. 

It is noteworthy that the use of physical, math-
ematical, and numerical modeling for simulating 
river pollution problems have been used widely 
during the last decades [Schaffner et al., 2009; 
Kisi and Parmar, 2016; Drozdov et al., 2021; 
Zounemat-Kermani et al., 2021a]. Mathematical 
water quality modeling has proved as a reliable 
and cost-effective approach to simulating pollut-
ant distribution in surface waters and rivers that 
can be successfully employed in water resources 
planning and management. It should be noted that 
modeling is not a substitute to the field observa-
tions but it can be considered and used as a proper 
alternative in simulating or understanding obser-
vations under certain circumstances. 

On the other hand, the demand for increas-
ing accuracy in modeling water quality issues has 
led to a focus on the implementation of artificial 
intelligence methods in this field. During the last 
decades, soft computing methods and machine 
learning models have been successfully used and 
developed for modeling different areas of hydro-
environment systems [Kim et al., 2014; Ahmed et 
al., 2019; Zounemat-Kermani et al., 2019; Bui et 
al., 2020; Fadaee et al., 2020; Shiri et al., 2021]. 

By using artificial neural network (ANN) 
technique, Najah et al. [2009] investigated and 
predicted the water qualitative variables in Jo-
hor River (Malaysia). They developed 6 archi-
tectures for neural networks, in such a way that 
the ANN model was used in the simulation and 

prediction of the parameters of total dissolved 
solids, electrical conductivity and turbidity, in 
two main stream and tributary positions. Due 
to the low prediction error, the outcomes of the 
aforementioned research proved the reliability 
of the model which were used in estimating the 
aforementioned parameters. 

Sighn et al. [2009] demonstrated the capa-
bility and power of SNNs in modeling dissolved 
oxygen (DO) and biochemical oxygen demand 
(BOD) by using data gathered monthly over a 
10-year period in Gomti River (India). This study 
indicated that optimal networks would be able to 
control and capture the observed long-term trends 
for the DO and BOD qualitative variables in time 
and space. Najah et al. [2014] compared the abil-
ity of the ANFIS model to predict the amount of 
dissolved oxygen in the Johor River basin with 
the MLP network and compared the capability of 
the ANFIS model to predict the amount of dis-
solved oxygen in the Johor River basin with the 
MLP network. For this purpose, four parameters 
of temperature, pH, nitrate concentration and am-
monia nitrogen concentration were adopted in or-
der to create the input compounds to modeling. 

Sarkar and Pandey [2015] implemented arti-
ficial neural network (ANN) to estimate the dis-
solved oxygen (DO) concentrations for Mathura 
city, located in India. Datasets in monthly inter-
vals including flow discharge, pH, biochemical 
oxygen demand (BOD), water temperature, and 
DO were gathered for doing the analysis. The 
predicted values obtained from the ANN for 
DO concertation, showed high level of accuracy 
(Pearson’s correlation coefficient > 0.9) between 
the measured and predicted parameters. Raheli et 
al. [2017] predicted dissolved oxygen and BOD 
parameters in Langat River (Malaysia) through 
various models including perceptron lattice 
(MLP) and MLP model integrated with the glow 
worm metaheuristic algorithm. The results dem-
onstrated that hybrid model was more efficient 
and accurate in estimating the qualitative vari-
ables of the river water by involving an optimizer. 

Haghibi et al. [2018] investigated the per-
formance of some soft computing techniques in-
cluding neural networks, group method of data 
handling (GMDH), and SVR for the prediction 
of water quality indices in rivers. They claimed 
that the results ANN and SVR were suitable for 
predicting the water quality indices. Li et al. 
[2019] implemented a hybrid machine learning 
methodology embedding the metaheuristic firefly 
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algorithm (FA) with the support vector regression 
(SVR) with for modeling water quality indicator 
prediction. The outcomes of the study showed 
that the SVR–FA model acted appropriately and 
provided promising results for the prediction of 
water quality index (WQI). Lu and Ma [2020] ap-
plied two hybrid tree-based soft computing mod-
els (extreme gradient boosting (XGBoost) and 
random forest (RF)) to predict the water quality in 
the Tualatin River, China. It was reported that the 
RF performed better than the other applied mod-
els in terms of the predicted values of DO, water 
temperature, and specific conductance. More-
over, stability analysis showed that the prediction 
stability of RF and XGBoost is higher than other 
benchmark models. 

Varol [2020] scrutinized and assessed the ef-
fect of several stressors (such as agricultural run-
off and untreated domestic sewage) on the water 
quality of Sürgü Stream (Turkey) with multivari-
ate statistical techniques (MSTs) and water qual-
ity index. The majority of the studied qualitative 
parameters indicated significant spatial changes 
owing to the anthropogenic activities. 

Pham et al. [2021] predicted WQI for the 
quality of water in wetlands using three artificial 
intelligence models (adaptive neuro-fuzzy sys-
tem (ANFIS), ANNs, and GMDH). The results 
indicated that the ANFIS with (NSE = 0.9634 & 
MAE = 0.0219) had better performance to pre-
dict the WQI. Leong et al. [2021] applied the 
SVM machine learning model for predicting 
BOD and COD, as two WQI indices. They found 
that the SVM acted better than the traditional 
mathematical models. 

By using the calculation of reflectance in 
remote sensing and the synchronous measure-
ment of dissolved oxygen levels and water tem-
perature in water bodies from 22 degrees north 
latitude to 45 degrees north latitude, Guo et al. 
[2021] developed and validated support vector 
regression (SVR) models and examined the ef-
fects of five climatic factors on the long-term 
behavior of dissolved oxygen. The results indi-
cated the capability and generalizability of the 
SVR models developed in this study as well as 
better performance of these models in estimating 
dissolved oxygen by random forest methods and 
multiple linear regression. 

Yu et al. [2022] presented a new method 
including decomposition of water quality data 
into a number of subseries by wavelet transform 
method, recombined by fuzzy C-means clustering 

and prediction (prediction) with the bidirectional 
gated recurrent unit method. The proposed model 
was assessed by qualitative data (including dis-
solved oxygen variable) from Poyang Lake (lo-
cated in China) which indicated high accuracy in 
forecasting data. 

Using the variables of temperature and flow 
rate, Dehghani et al. [2022] predicted the amount 
of dissolved oxygen (DO) in Cumberland Riv-
er (located in the United States). In the present 
study, time series were monthly. Support vec-
tor regression (SVR) was responsible for mod-
elling by itself and in combination with CSO, 
SSD, BWO and AIG algorithms. The four hybrid 
models performed better than the single model 
since they increased accuracy of estimation from 
1.75% to 6.52%. 

These studies highlight the desirable capa-
bility of data-based methods in estimating and 
predicting the quality variables of surface water. 
It can be said that by relying on the capacity of 
these methods, direct measurement of quality in-
dicators can be reduced and the level of planning 
and quality management in natural flows can be 
improved. In other words, artificial intelligence 
models, owing to understanding the relationships 
governing the processes in water bodies (without 
the need for basic equations), have great accu-
racy and power in assessing and estimating wa-
ter quality conditions and are considered as an 
effectual tool in determining the parameters of 
river water quality. Conversely, successful and 
frequent implementation of ensemble techniques 
including resampling methods (such as bagging 
and boosting), averaging and stacking has been 
reported for simulating and predicting the defined 
goals in diverse fields of hydrology [Zounemat-
Kermani et al., 2021a]. 

All of the aforementioned issues encouraged 
the authors of the present study to use new mod-
eling tools in the field of water quality in order 
to use artificial intelligence models in a more in-
novative way. The comprehensive explanation 
is that in the present inquiry, the amount of dis-
solved oxygen in the river was predicted by two 
groups and, subsequently, their aggregation was 
conducted. The first group was network-based 
including ANFIS-PSO and OS-ELM, and the 
second group was a regression tree, consisting of 
two models including Bagging-RF and Boosting 
CART. So far, no such comparison has been con-
ducted in the field of water quality. By stacking 
four models, as well as ensuring innovation in the 
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methodology used, a more accurate assessment 
of the combinability of the models was provided. 
Stacking the models was implemented using two 
algorithms of averaging and MLP neural network, 
so that the analysis of this process and its eff ect 
on the predictive power of dissolved oxygen were 
completed. Such a comprehensive structure was 
adopted for the fi rst time in applying methods and 
comparing the power of models individually, in 
groups and collectively.

MATERIALS AND METHODS

Study area and data

The data of this study were gathered on a daily 
basis from January 1, 2016 to December 31, 2018 
(including 1,096 recorded values of each vari-
able) from the United States Geological Survey 
[USGS, 2022]. Figure 1 represents the geographi-
cal location of measuring the data of the present 

study in Allen, Indiana (U.S), with the follow-
ing features: (Hydrologic Unit Code 04100005, 
Latitude 41°10'59.1", Longitude 84°52'10.9" 
NAD83, Drainage area 12.36 square miles, Gage 
datum 723.46 feet above NAVD88).

In Table 1, a summary of the statistical sta-
tus of the studied parameters is available. From 
among the introduced parameters, DO (dissolved 
oxygen) is a target variable that along with oth-
er parameters, makes it possible to qualitatively 
model the river water; it can be said that predict-
ing and estimating DO concentration are the re-
sponses to the interaction between the qualitative 
variables in the river fl ow fi eld. In fact, analyz-
ing the qualitative parameter of dissolved oxygen 
along with other qualitative parameters (Cl, OP, 
NO3 + NO2, SSC, P, T, SC, pH and NH3 + NH4), 
as well as the fl ow rate (Q) form the problem 
structure of this study. 

As expected, despite the quantitative changes 
of water over time (Figure 2) and its eff ect on the 

Figure 1. (a) Location of the study area in Allen County, Indiana; 
(b) variations of the dissolved oxygen at the study site

Table 1. Summary of the descriptive statistics of the gathered data in this study
Variable Symbol Mean StDev CoefVar Minimum Maximum Skewness Kurtosis

Discharge (m3/s) Q 0.339 0.895 263.81 0.001 9.798 5.66 40.52

Chloride* (ton/d) Cl 0.742 1.335 179.99 0.000 14.900 4.08 23.08

Orthophosphate* (kg/d) OP 7.412 27.768 374.63 0.005 344.730 6.19 46.90

Nitrate plus nitrite*, (kg/d) NO3+NO2 148.30 357.40 241.05 0.000 3374.700 4.70 27.92

Suspended sediment concentration 
(mg/L) SSC 39.250 112.82 287.44 2.000 1930.000 8.08 93.96

Phosphorus (mg/L) P 0.218 0.228 104.47 0.035 2.100 3.89 21.93

Temperature, water, (Celsius) T 12.211 8.229 67.39 0.000 26.500 0.02 -1.46

Specifi c conductance (μS/cm) SC 721.70 133.04 18.43 292.0 1120.000 -0.29 -0.23

pH pH 7.996 0.218 2.72 7.300 8.500 -0.75 0.53

Ammonia* (kg/d) NH3+NH4 6.882 24.94 362.41 0.000 264.444 5.89 41.91

Dissolved oxygen (mg/L)** DO 9.565 3.226 33.73 0.100 18.500 -0.02 -0.78

Note: * measured in dissolved water; ** the target (dependent) parameter.
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self-purifi cation potential of the river, remarkable 
changes in water quality are observed in low wa-
ter and high-water months, in such a way that in 
July to September, the rate of DO was lower than 
other months. This is in line with the changes of 
fl ow rate in those months (Figure 3) and refers to 
the relationship between qualitative variables and 
fl ow in a series of time. So, in order to avoid the 
eff ect of the corresponding temporal eff ects of the 
data used (Table 1) in the models and to prevent a 
time trend from entering the process of predicting 
dissolved oxygen concentration, the chronological 
order of all data is disordered randomly. 75% of 
the beginning of the new series obtained from the 
data is intended for the model learning course and 
the fi nal 25% is intended for testing the models. 

Methodology

In this section, the methods used in order to 
predict the concentration of dissolved oxygen of 
the river in the present study are introduced from 
four individual models (i.e., ANFIS-PSO, OS-
ELM, Bagging-RF and Boosting CART) and two 
stacking ones (i.e., SMA and MLP meta-learner). 

Network-based models

ANFIS-PSO

Using adaptive neural network and fuzzy logic 
algorithms to design a nonlinear mapping between 
input and output spaces, an adaptive neural-fuzzy 
inference system (ANFIS) is developed. In the 

Figure 2. Variations of the discharge at the study site

Figure 3. Schematic diagram for the methodology used in this study
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learning phase, the input values are more similar 
to the actual values by modifying the parameters 
of membership degree according to the accept-
able error rate. The major learning method in this 
system is the back propagation method under the 
least squares error algorithm, which corrects the 
parameters by returning the error value to the in-
puts. In order to achieve the desired framework of 
the neural-fuzzy system, it is essential to fit this 
system to the rules and functions of membership 
[Jang, 1993]. Hence, in the present article, the 
particle swarm optimization (PSO) algorithm is 
adopted to achieve the membership function and 
fuzzy rule extraction method in an optimal way, so 
that the algorithm can search for the optimal state 
by randomly creating solutions. In this study, ini-
tial population of particles is equal to 100, c1 and 
c2 acceleration parameters for the search space of 
-10 to +10 in each repetition are equal to 1 and 2, 
the best membership function is of the Gaussian 
type and the subtractive clustering method is ob-
tained as the major partitioning technique. 

OS-ELM 

The extreme learning machine is a single-
hidden layer feed forward neural network which 
determines input weights randomly and out-
put weights analytically, except that it does not 
use bias for the output neuron. The ELM model 
decreases the network learning time remark-
ably by using different algorithms in calculating 
weights and biases. Moreover, by applying a set 
of weighted input signals to the network, activity 
functions allow for achieving a response [Huang 
et al., 2006]. The online sequential extreme learn-
ing machine can be trained with individual data 
or blocks of them in a significantly variable or 
fixed size. This model adopts additive hidden 
nodes and radial basis function (RBF) in a unified 
framework [Liang et al., 2006; Zounemat-Ker-
mani et al., 2021b]. The present study has a sig-
moid activating function for the additive node so 
as to allow for the output matrix calculation of the 
hidden layer in the sequential learning algorithm. 

Tree-based (regression) models

Bagging-RF

In order to create a regression tree, reversal 
partitioning and multiple regressions are used. 
The decision process is repeated in each internal 
node from the root node, according to the tree 

rule, until the termination condition is satisfied. 
Each final node is connected to a simple regres-
sion model. At the end of the tree calling process, 
pruning is used to improve the generalization ca-
pacity of the trees by reducing the complexity of 
the structure. In order to avoid the accordance of 
various regression trees, the Bagging-RF model 
reduces the diversity of trees by creating diverse 
subsets of training data, which is referred to as 
bagging. Bagging is performed through random 
sampling of the main data set with replacement. 
Hence, some data may be used more than once 
in learning branches, while ineffective data may 
be excluded from modeling. This makes the mod-
el more stable and reliable in the face of minor 
changes in input data and enhances its prediction 
accuracy [Breiman, 2001]. In the present study, 
the sample size, maximum number of nodes, max-
imum tree depth and minimum child node size are 
calculated as 1, 10000, 10 and 5, respectively. 

Boosting CART

The regression and classification tree mod-
el (CART) is in the form of a binary order tree 
that divides the problem space into segment parts 
[Fürnkranz et al., 2012]. This method creates its 
branches in a binary way and based on only one 
independent variable, in such a way that the in-
formation in the node is divided into two parts, 
based on the condition defined in each node. In the 
Boosting CART model, several new learners are 
generated from CART regression tree, which cre-
ates a more powerful algorithm by learning with 
previous learners. In this inquiry, maximum tree 
depth, number of component models for boosting 
and maximum surrogate in the pruning method are 
calculated as 5, 10 and 5, respectively. The Gini 
index is the impurity measure of decomposition 
and averaging is considered as the combining rule. 

Ensemble models

SMA model (stacking)

The simple moving average (SMA) model 
predicts target values by averaging the available 
data. In stacking mode, this model considers the 
average of the values which are figured by the in-
dividual models at a given time as the target value 
at that time [Zounemat-Kermani et al., 2021a]. 

Meta-learner MLP model (stacking)

The multilayer perceptron neural network 
(MLP) is created based on a computational unit 
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called perceptron. A perceptron takes a vector of 
inputs with actual values and calculates a linear 
combination of these inputs. In this method, cal-
culations are performed from the input of the net-
work to its output and, afterwards, the obtained 
error values are released into the previous layers 
in order to make the completion of the learning 
process possible [Barzegar and Asghari Moghad-
dam, 2016]. In the stacking mode, by connecting 
the output of individual models and defining them 
as input to the MLP neural network, the structure 
of a powerful meta-learner model is established. 
In the present study, the sigmoid activation func-
tion is used in the middle layer and the linear 
function in adopted in the output layer and the 
Levenberg-Marquardt optimization algorithm. 

EVALUATION CRITERIA

Comparing the efficiency of the models and 
interpreting their abilities needs the use of error 
measurement criteria. Concerning this issue, as 
well as allowing visual comparisons with subject 
profile and marginal-scatter diagrams (Figures 5 
and 6), quantitative metrics in Table 3 help increase 
accuracy in analyzing the modelling process. 

In this research, the root mean square error 
(RMSE), mean absolute error (MAE), geometric 
reliability index (GRI), Pearson’s correlation co-
efficient (r) and mean bias error (MBE) were used 
in order to scrutinize the results. RMSE, MAE 
and MBE were obtained based on the deviation 
of the predicted values from the observed values. 
Therefore, the lower the value, the more power-
ful the model would be, while GRI and r creates 
such a condition by approaching to 1. RMSE 
and MBE are two statistical measurements that 
have been widely used in environmental estima-
tion models [Jacovides and Kontoyiannis, 1995]. 
Also, relative error measurements have a good 
level of reliability for analyzing positive data 
such as the values which are reported from the 
concentration of a variable [Jachner et al., 2007]. 
RMSE does not differentiate between over-esti-
mation and under-estimation, while positive and 
negative MBE denote the model’s tendency to 
over-predicted and under-predicted, respectively 
[Jacovides and Kontoyiannis, 1995]. GRI can 
also be considered as an exact simulation as a 
multiplicative factor in observational values, by 
virtue of which the corresponding predicted val-
ues are available [Jachner et al., 2007]. 
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 (5)

In Equations 1 to 5, DOm and D͞Om the con-
centration of the measured dissolved oxygen and 
its mean respectively, DOc and D͞Oc the dissolved 
oxygen concentration calculated by the model 
and its mean respectively, and N are the number 
of actual and predicted data pairs. Based on the 
aforementioned equations, the difference criteria 
(RMSE, MAE and MBE) are expressed based on 
the data unit used and the relative criteria (GRI 
and r) are expressed without units. 

FEATURE SELECTION PROCEDURE

In this research two methods of Pareto optimi-
zation and best subset selection methods have been 
applied for constructing the best input combination. 

Unsupervised feature selection 
using Pareto optimization 

Variables Q, P, T, SC and pH are the selected 
parameters; the degree of their effectiveness at the 
significance level of 15% is represented in Figure 4  
by Pareto method. In this figure, the reference 
line with the standardized effect of 1.44 shows the 
minimum value for a significant relationship be-
tween the input parameter and the output variable 
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of the model, in a way that from among the chosen 
variables, temperature (T) and fl ow rate (Q) have 
the most and least eff ects on DO, respectively. 

Best subset selection method

By taking into account a series of daily in-
put parameters including 10 variables (Q, Cl, 
OP, NO3 + NO2, SSC, P, T, SC, pH and NH3 + 
NH4), in this paper, we tried to evaluate the mod-
el of the output calculation (DO) on the same 
day. This requires the defi nition of statistical 
and analytical frameworks. In Table 2, the input 
variables with the maximum eff ect on dissolved 
oxygen values are selected with respect to the 
minimum Mallows’ Cp statistic and in the high-
est correlation with DO (R-squared maximum); 
other parameters are not included in the model-
ing. In this section, the results are presented in 
the form of tables and graphs. Also, some expla-
nations and clarifi cations are provided in order 
to provide the reader with a deeper understand-
ing of numbers and fi gures.

RESULTS AND DISCUSSION

In subject profi le diagrams (Figure 5), the 
outliers in the observational data are really obvi-
ous. The data which are used to draw these graphs 
were associated with the test phase. Scrutinizing 
them reveals that these DO values are on either 
side of the graph; i.e., they have the lowest and 
highest values. The lowest outlier is related to a 
dissolved oxygen concentration data, the corre-
spondent parameters of which, i.e., Cl, OP, NO3 + 
NO2, SC and NH3 + NH4, are equal to 0.43 ton/d, 
0.7 kg/d, 73 kg/d, 963 μS/cm and 1.18 kg/d. The 
maximum output is fi ve data, the average value of 
which for the mentioned variables is equal to 0.19 
ton/d, 0.3 kg/d, 24 kg/d, 814 μS/cm and 0.25 kg/d. 

More chloride in outlier-Min compared to 
outlier-Max (0.43 vs. 0.19) increases the possibil-
ity of entering the agricultural runoff  and munici-
pal and industrial effl  uents to the river on the day 
of gathering the data of outlier-Min. The persis-
tence of chloride in water can indicate such an 
event because it leads to the absence of chloride 
in chemical and biological reactions in the river 
and the presence of this element can demonstrate 
the presence of water pollution to some extent. 
Signifi cant increase in nitrate (NO3), nitrite (NO2), 
ammonia (NH3) and ammonium (NH4) in the out-
lier-Min is in accordance with the hypothesis of 
entering the wastewater to the river and it refers 
to the nitrogen cycle, its eff ect on oxidation and 
reduction processes as well as the amount of wa-
ter-soluble oxygen. It should be mentioned that it 
seems logical to reduce the concentration of dis-
solved oxygen to 1.9 mg/L and consume it by the 
nitrogen compounds in the effl  uent. Specifi c con-
ductance (SC) is the rate of electrical conduction 

Table 2. The eff ective input variables on the target parameters (DO) based on the maximum R-squared and 
minimum Mallows CP parameters

Variables R-Squared Mallows Cp Q Cl OP NO3+NO2 SSC P T SC pH NH3+NH4

1 69.0 664.2 X

2 75.2 311.9 X X

3 78.4 136.1 X X X

4 80.3 31.1 X X X X

5 80.8 4.8 X X X X X

6 80.8 5.1 X X X X X X

7 80.8 6.4 X X X X X X X

8 80.8 8.0 X X X X X X X X

9 80.8 9.4 X X X X X X X X X

10 80.8 11.0 X X X X X X X X X X

Note: The fi ve selected parameters are Q, P, T, SC, and pH.

Figure 4 Pareto chart of the standardized eff ects for the 
DO as the response parameter based on the regression 
analysis (α=0.15)
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through water-soluble salts. The SC is higher in 
the outlier-Min than in the outlier-Max, which is 
in accordance with the higher amount of chlorine 
ions in this case. Moreover, specific conductivity 
is directly related to total dissolved solids. These 
total dissolved solids contain organic matter and 
nutrients, as well as metals. 

It should be noted that the outlier mentioned 
in this article means that the actual DO value is 
further away from the normal and expected data 
range, which may have been owing to an external 
factor (such as pollution) and a change in normal 
conditions in the water body. This approach intro-
duces two approaches in order to address subject 
profile diagrams. To put it another way, we can 
divide these diagrams into two main parts: the 
major part of them consists of normal data and 
the minor and most important part contains out-
lier data. The importance of this view is reflected 
in tracking pollution on the days when the DO 

is severely reduced and, in fact, abnormal fluc-
tuations happen in the concentration of dissolved 
oxygen. Comparing minimum outlier with the 
maximum outlier is performed, so that the data 
are of the same type; i.e., the river quality condi-
tions are not normal and the data indicate the days 
that show a significant increase or decrease in the 
intensity of the effects of external factors. In com-
pleting this view, the maximum outlier indicates 
the days when the least pollution entered the river 
and its amount was less than the self-purification 
capacity of the river. 

Also, in such a qualitative approach, the nor-
mal range of DO concentration can be interpreted 
as the equilibrium condition between the amount 
of pollutants and the self-purification capacity of 
the water body. This represents the value of sub-
ject profile diagrams (not yet seen in similar stud-
ies) that are highly in line with the RMSE and 
MAE error criteria in the test phase (Table 3). 

Table 3. Train and test results of DO

Category Type Model Phase RMSE
(mg/L)

MAE
(mg/L) GRI r MBE

(mg/L)

Stand-alone- 
Integrative Network-based ANFIS-PSO

Training 1.247 0.881 1.189 0.925 -0.054

Testing 1.284 0.989 1.180 0.923 0.413

Stand-alone- Hybrid Network-based OS-ELM
Training 1.186 0.849 1.172 0.932 -0.000

Testing 1.333 1.048 1.187 0.927 0.514

Ensemble-Bagging Regression Tree Bagging-RF
Training 1.369 0.993 1.202 0.909 0.136

Testing 1.242 0.919 1.162 0.917 0.019

Ensemble-Boosting Regression Tree Boosting 
CART

Training 1.176 0.865 1.183 0.934 0.072

Testing 1.059 0.834 1.128 0.940 -0.060

Ensemble-Stacking Model averaging SMA
Training 1.101 0.771 1.168 0.942 0.039

Testing 1.058 0.807 1.144 0.945 0.221

Ensemble-Stacking Meta-learner ANN (MLP)
Training 1.047 0.733 1.171 0.948 0.004

Testing 0.965 0.698 1.132 0.950 -0.063

Figure 5 Subject profile plots for the observed data and the predicted results of (a): the network-based models 
(ANFIS-PSO & OS-ELM); (b): the regression-tree models (Bagging-RF and Boosting CART); (C): the ensemble 
stacking models (SMA and Meta-learner MLP)
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According to Figures 5b and 5c, the Meta-
learner MLP model has the best performance 
and Boosting CART method was more power-
ful in predicting DO for normal and outlier data. 
Also, the SMA technique, despite having RMSE 
= 1.058 mg/L and MAE = 0.807 mg/L, did not 
act satisfactorily in estimating outliers. Actually, 
increasing horizontal lines in subject profile dia-
grams were associated with enhancing the perfor-
mance of the models. ANFIS-PSO and OS-ELM 
models, in addition to having weakness in deter-
mining the amount of outlier data, did not have 
a good performance with RMSE = 1.284 mg/L 
and RMSE = 1.333 mg/L, respectively. Figure 5b 
shows that the Bagging-RF technique, unlike the 
other tree algorithm (Boosting CART), presents a 
state of classification in the results that accumu-
lated and increased the error. 

According to Table 3, the highest bias in the 
test phase can be observed in the network-based 
models, where the deviation of the computation-
al values from the 1 : 1 line and the tendency to 
overestimating (placing the maximum points of 
the graph above the 1 : 1 line) are quite clear in 
Figure 6a. The symmetry of the points relative 
to the 1 : 1 line (Bagging-RF model, Figure 6b) 
causes the MBE values to approach 0. However, 
the centralization of the points on this line (Me-
ta-learner MLP in Figure 6c; Boosting CART in 
Figure 6b) as well as satisfying the insignificance 

of MBE (MBE = -0.06) reveals higher effective-
ness of the model. This is in line with the high 
conformity of the box plots drawn for the Boost-
ing CART and the Meta-learner MLP to the box 
plot of observational data. It is interesting to 
note that the Boosting CART and Meta-learner 
MLP methods were mostly in line with the lower 
branch (the connecting line between the lower 
whisker and Q1) and the upper branch (the con-
nection between Q3 and the higher whisker) of 
box plot of the actual data, respectively. In the 
test phase of the superior models (Meta-learner 
MLP and Boosting CART), the criterion r indi-
cated high correlation between the estimated and 
actual values (r = 0.950 and r = 0.940) and the 
GRI criterion showed the highest geometric sim-
ilarity (GRI = 1.132 and GRI = 1.128). 

According to Table 3, the OS-ELM and AN-
FIS-PSO methods (with the highest RMSE and 
MAE in the test phase) were the weakest mod-
els. These models had negative MBE in train-
ing phase and underestimated the desired items. 
However, in the test phase, only the most accu-
rate models (Meta-learner MLP and Boosting 
CART) had negative mean bias error values. It 
is likely that in the data related to the dissolved 
oxygen concentration, there was a tendency to 
decrease due to natural refining and oxygen con-
sumption. Therefore, even the best models were 
in a state of underestimation during the training 

Figure 6. Marginal-scatter plots for the predicted results of (a): the network-based models (ANFIS-PSO & OS-
ELM); (b): the regression-tree models (Bagging-RF & Boosting CART); (c): the ensemble stacking models (SMA 
& Meta-learner MLP); the numbers on the box-plots illustrate the lower whisker, Q1, median, Q3, and higher 
whisker values
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Table 4. Improvement percentage of RMSE criterion in the testing results of Meta-learner MLP model in analogy 
to other methods

Model RMSE
(mg/L)

Ratio ANN (MLP)
Error to other models (%)

ANN (MLP)
improvement to other models (%)

ANFIS-PSO 1.284 75.10 24.90

OS-ELM 1.333 72.38 27.62

Bagging-RF 1.242 77.67 22.33

Boosting CART 1.059 91.12 8.88

SMA 1.058 91.18 8.82

ANN (MLP) 0.965 - -

and testing phases. Finally, in the present study, 
the highest conformity was obtained between 
the performance of the models in DO predic-
tion with the RMSE criterion, revealing the high 
validity of this measurement in modeling mea-
surement. Hence, the relative improvement in 
the performance of the best model compared to 
other models in the test phase is represented in 
Figure 7 and Table 4. 

CONCLUSIONS

In arranging test models in the order of de-
sirability, the RMSE criterion can be relied upon 
(Meta-learner MLP is the most desirable model 
and OS-ELM is the least accurate method). At the 
same time, by analyzing the distribution diagrams 
and subject profile, it is possible to make a more 
accurate judgment and, according to the outlier 
examination, it was found that Boosting CART 
had much more predictive power than SMA. 
However, these models had almost the same 
RMSE. In the following, the superiority of the 

models was discussed based on the category and 
type. Network-based models had less accuracy 
than tree methods, which could be owing to the 
type of tree algorithm learning. It should be noted 
that there was little error in the training phase for 
network-based models, but the effect of the type 
of learning led to the superiority of regression tree 
models in the test phase. Stacking models also in-
tensified the ensemble effect to the point that the 
simplest ensemble-stacking model had better per-
formance than network-based and Bagging-RF 
models. Also, stacking performed under neural 
network experienced improved performance in 
modelling, which indicated not only the impor-
tance of ensemble modeling, but also the validity 
of combining models by stacking them. 

Finally, it is suggested that in future studies, 
stacking models should be equipped with an op-
timization algorithm and the results obtained in 
two modes should be compared and evaluated, 
so as to predict the parameters of water quality. 
For instance, the MLP model should be integrated 
with particle swarm optimization (PSO) and gray 
wolf optimizer (GWO) algorithms. 

Figure 7. Meta-learner MLP improvement to other models (%) based on RMSE criterion in the testing status
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